数列求和的七种方法及例题百度文库

网上有关“数列求和的七种方法及例题百度文库”话题很是火热,小编也是针对数列求和的七种方法及例题百度文库寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

(1) 66x+17y=3967

25x+y=1200

答案:x=48 y=47

(2) 18x+23y=2303

74x-y=1998

答案:x=27 y=79

(3) 44x+90y=7796

44x+y=3476

答案:x=79 y=48

(4) 76x-66y=4082

30x-y=2940

答案:x=98 y=51

(5) 67x+54y=8546

71x-y=5680

答案:x=80 y=59

(6) 42x-95y=-1410

21x-y=1575

答案:x=75 y=48

(7) 47x-40y=853

34x-y=2006

答案:x=59 y=48

(8) 19x-32y=-1786

75x+y=4950

答案:x=66 y=95

(9) 97x+24y=7202

58x-y=2900

答案:x=50 y=98

(10) 42x+85y=6362

63x-y=1638

答案:x=26 y=62

(11) 85x-92y=-2518

27x-y=486

答案:x=18 y=44

(12) 79x+40y=2419

56x-y=1176

答案:x=21 y=19

(13) 80x-87y=2156

22x-y=880

答案:x=40 y=12

(14) 32x+62y=5134

57x+y=2850

答案:x=50 y=57

(15) 83x-49y=82

59x+y=2183

答案:x=37 y=61

(16) 91x+70y=5845

95x-y=4275

答案:x=45 y=25

(17) 29x+44y=5281

88x-y=3608

答案:x=41 y=93

(18) 25x-95y=-4355

40x-y=2000

答案:x=50 y=59

(19) 54x+68y=3284

78x+y=1404

答案:x=18 y=34

(20) 70x+13y=3520

52x+y=2132

答案:x=41 y=50

(21) 48x-54y=-3186

24x+y=1080

答案:x=45 y=99

(22) 36x+77y=7619

47x-y=799

答案:x=17 y=91

(23) 13x-42y=-2717

31x-y=1333

答案:x=43 y=78

(24) 28x+28y=3332

52x-y=4628

答案:x=89 y=30

(25) 62x-98y=-2564

46x-y=2024

答案:x=44 y=54

(26) 79x-76y=-4388

26x-y=832

答案:x=32 y=91

(27) 63x-40y=-821

42x-y=546

答案:x=13 y=41

(28) 69x-96y=-1209

42x+y=3822

答案:x=91 y=78

(29) 85x+67y=7338

11x+y=308

答案:x=28 y=74

(30) 78x+74y=12928

14x+y=1218

答案:x=87 y=83

(31) 39x+42y=5331

59x-y=5841

答案:x=99 y=35

(32) 29x+18y=1916

58x+y=2320

答案:x=40 y=42

(33) 40x+31y=6043

45x-y=3555

答案:x=79 y=93

(34) 47x+50y=8598

45x+y=3780

答案:x=84 y=93

(35) 45x-30y=-1455

29x-y=725

答案:x=25 y=86

(36) 11x-43y=-1361

47x+y=799

答案:x=17 y=36

(37) 33x+59y=3254

94x+y=1034

答案:x=11 y=49

(38) 89x-74y=-2735

68x+y=1020

答案:x=15 y=55

(39) 94x+71y=7517

78x+y=3822

答案:x=49 y=41

(40) 28x-62y=-4934

46x+y=552

答案:x=12 y=85

(41) 75x+43y=8472

17x-y=1394

答案:x=82 y=54

(42) 41x-38y=-1180

29x+y=1450

答案:x=50 y=85

(43) 22x-59y=824

63x+y=4725

答案:x=75 y=14

(44) 95x-56y=-401

90x+y=1530

答案:x=17 y=36

(45) 93x-52y=-852

29x+y=464

答案:x=16 y=45

(46) 93x+12y=8823

54x+y=4914

答案:x=91 y=30

(47) 21x-63y=84

20x+y=1880

答案:x=94 y=30

(48) 48x+93y=9756

38x-y=950

答案:x=25 y=92

(49) 99x-67y=4011

75x-y=5475

答案:x=73 y=48

(50) 83x+64y=9291

90x-y=3690

答案:x=41 y=92

(51) 17x+62y=3216

75x-y=7350

答案:x=98 y=25

(52) 77x+67y=2739

14x-y=364

答案:x=26 y=11

(53) 20x-68y=-4596

14x-y=924

答案:x=66 y=87

(54) 23x+87y=4110

83x-y=5727

答案:x=69 y=29

(55) 22x-38y=804

86x+y=6708

答案:x=78 y=24

(56) 20x-45y=-3520

56x+y=728

答案:x=13 y=84

(57) 46x+37y=7085

61x-y=4636

答案:x=76 y=97

(58) 17x+61y=4088

71x+y=5609

答案:x=79 y=45

(59) 51x-61y=-1907

89x-y=2314

答案:x=26 y=53

(60) 69x-98y=-2404

21x+y=1386

答案:x=66 y=71

(61) 15x-41y=754

74x-y=6956

答案:x=94 y=16

(62) 78x-55y=656

89x+y=5518

答案:x=62 y=76

(63) 29x+21y=1633

31x-y=713

答案:x=23 y=46

(64) 58x-28y=2724

35x+y=3080

答案:x=88 y=85

(65) 28x-63y=-2254

88x-y=2024

答案:x=23 y=46

(66) 43x+50y=7064

85x+y=8330

答案:x=98 y=57

(67) 58x-77y=1170

38x-y=2280

答案:x=60 y=30

(68) 92x+83y=11586

43x+y=3010

答案:x=70 y=62

(69) 99x+82y=6055

52x-y=1716

答案:x=33 y=34

(70) 15x+26y=1729

94x+y=8554

答案:x=91 y=14

(71) 64x+32y=3552

56x-y=2296

答案:x=41 y=29

(72) 94x+66y=10524

84x-y=7812

答案:x=93 y=27

(73) 65x-79y=-5815

89x+y=2314

答案:x=26 y=95

(74) 96x+54y=6216

63x-y=1953

答案:x=31 y=60

(75) 60x-44y=-352

33x-y=1452

答案:x=44 y=68

(76) 79x-45y=510

14x-y=840

答案:x=60 y=94

(77) 29x-35y=-218

59x-y=4897

答案:x=83 y=75

(78) 33x-24y=1905

30x+y=2670

答案:x=89 y=43

(79) 61x+94y=11800

93x+y=5952

答案:x=64 y=84

(80) 61x+90y=5001

48x+y=2448

答案:x=51 y=21

(81) 93x-19y=2

86x-y=1548

答案:x=18 y=88

(82) 19x-96y=-5910

30x-y=2340

答案:x=78 y=77

(83) 80x+74y=8088

96x-y=8640

答案:x=90 y=12

(84) 53x-94y=1946

45x+y=2610

答案:x=58 y=12

(85) 93x+12y=9117

28x-y=2492

答案:x=89 y=70

(86) 66x-71y=-1673

99x-y=7821

答案:x=79 y=97

(87) 43x-52y=-1742

76x+y=1976

答案:x=26 y=55

(88) 70x+35y=8295

40x+y=2920

答案:x=73 y=91

(89) 43x+82y=4757

11x+y=231

答案:x=21 y=47

(90) 12x-19y=236

95x-y=7885

答案:x=83 y=40

(91) 51x+99y=8031

71x-y=2911

答案:x=41 y=60

(92) 37x+74y=4403

69x-y=6003

答案:x=87 y=16

(93) 46x+34y=4820

71x-y=5183

答案:x=73 y=43

(94) 47x+98y=5861

55x-y=4565

答案:x=83 y=20

(95) 30x-17y=239

28x+y=1064

答案:x=38 y=53

(96) 55x-12y=4112

79x-y=7268

答案:x=92 y=79

(97) 27x-24y=-450

67x-y=3886

答案:x=58 y=84

(98) 97x+23y=8119

14x+y=966

答案:x=69 y=62

(99) 84x+53y=11275

70x+y=6790

答案:x=97 y=59

(100) 51x-97y=297

19x-y=1520

答案:x=80 y=39

这可是我找了半天才找出来的

选我为最佳答案吧!

求通项公式的7种方法,带例题。

高 中 数学 必 修 2知识点

第一章 空间几何体

1.1柱、锥、台、球的结构特征

1.2空间几何体的三视图和直观图

1 三视图:

正视图:从前往后

侧视图:从左往右

俯视图:从上往下

2 画三视图的原则:

长对齐、高对齐、宽相等

3直观图:斜二测画法

4斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

(3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

1.3 空间几何体的表面积与体积

(一 )空间几何体的表面积

1棱柱、棱锥的表面积: 各个面面积之和

2 圆柱的表面积

3 圆锥的表面积

4 圆台的表面积

5 球的表面积

(二)空间几何体的体积

1柱体的体积

2锥体的体积

3台体的体积

4球体的体积

第二章 直线与平面的位置关系

2.1空间点、直线、平面之间的位置关系

2.1.1

1 平面含义:平面是无限延展的

2 平面的画法及表示

(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)

(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。

3 三个公理:

(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内

符号表示为

A∈L

B∈L => L α

A∈α

B∈α

公理1作用:判断直线是否在平面内

(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A、B、C三点不共线 => 有且只有一个平面α,

使A∈α、B∈α、C∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P∈α∩β =>α∩β=L,且P∈L

公理3作用:判定两个平面是否相交的依据

2.1.2 空间中直线与直线之间的位置关系

1 空间的两条直线有如下三种关系:

相交直线:同一平面内,有且只有一个公共点;

平行直线:同一平面内,没有公共点;

异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a、b、c是三条直线

a∥b

c∥b

强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补

4 注意点:

① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;

② 两条异面直线所成的角θ∈(0, );

③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;

④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;

⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系

1、直线与平面有三种位置关系:

(1)直线在平面内 —— 有无数个公共点

(2)直线与平面相交 —— 有且只有一个公共点

(3)直线在平面平行 —— 没有公共点

指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示

a α a∩α=A a∥α

2.2.直线、平面平行的判定及其性质

2.2.1 直线与平面平行的判定

1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:

a α

b β => a∥α

a∥b

2.2.2 平面与平面平行的判定

1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:

a β

b β

a∩b = P β∥α

a∥α

b∥α

2、判断两平面平行的方法有三种:

(1)用定义;

(2)判定定理;

(3)垂直于同一条直线的两个平面平行。

2.2.3 — 2.2.4直线与平面、平面与平面平行的性质

1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:

a∥α

a β a∥b

α∩β= b

作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:

α∥β

α∩γ= a a∥b

β∩γ= b

作用:可以由平面与平面平行得出直线与直线平行

2.3直线、平面垂直的判定及其性质

2.3.1直线与平面垂直的判定

1、定义

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

L

p

α

2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点: a)定理中的“两条相交直线”这一条件不可忽视;

b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

2.3.2平面与平面垂直的判定

1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

A

梭 l β

B

α

2、二面角的记法:二面角α-l-β或α-AB-β

3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质

1、定理:垂直于同一个平面的两条直线平行。

2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本章知识结构框图

第三章 直线与方程

3.1直线的倾斜角和斜率

3.1倾斜角和斜率

1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.

2、 倾斜角α的取值范围: 0°≤α<180°.

当直线l与x轴垂直时, α= 90°.

3、直线的斜率:

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是

k = tanα

⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;

⑵当直线l与x轴垂直时, α= 90°, k 不存在.

由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.

4、 直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:

斜率公式:

3.1.2两条直线的平行与垂直

1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2

2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即

3.2.1 直线的点斜式方程

1、 直线的点斜式方程:直线 经过点 ,且斜率为

2、、直线的斜截式方程:已知直线 的斜率为 ,且与 轴的交点为

3.2.2 直线的两点式方程

1、直线的两点式方程:已知两点 其中

2、直线的截距式方程:已知直线 与 轴的交点为A ,与 轴的交点为B ,其中

3.2.3 直线的一般式方程

1、直线的一般式方程:关于 的二元一次方程 (A,B不同时为0)

2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式

3.3.1两直线的交点坐标

1、给出例题:两直线交点坐标

L1 :3x+4y-2=0

L1:2x+y +2=0

解:解方程组

得 x=-2,y=2

所以L1与L2的交点坐标为M(-2,2)

3.3.2 两点间距离

两点间的距离公式

3.3.3 点到直线的距离公式

1.点到直线距离公式:

点 到直线 的距离为:

2、两平行线间的距离公式:

已知两条平行线直线 和 的一般式方程为 : ,

: ,则 与 的距离为

第四章 圆与方程

4.1.1 圆的标准方程

1、圆的标准方程:

圆心为A(a,b),半径为r的圆的方程

2、点 与圆 的关系的判断方法:

(1) > ,点在圆外

(2) = ,点在圆上

(3) < ,点在圆内

4.1.2 圆的一般方程

1、圆的一般方程:

2、圆的一般方程的特点:

(1)①x2和y2的系数相同,不等于0.

 ②没有xy这样的二次项.

(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.

(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系

1、用点到直线的距离来判断直线与圆的位置关系.

设直线 : ,圆 : ,圆的半径为 ,圆心 到直线的距离为 ,则判别直线与圆的位置关系的依据有以下几点:

(1)当 时,直线 与圆 相离;

(2)当 时,直线 与圆 相切;

(3)当 时,直线 与圆 相交;

4.2.2 圆与圆的位置关系

两圆的位置关系.

设两圆的连心线长为 ,则判别圆与圆的位置关系的依据有以下几点:

(1)当 时,圆 与圆 相离;

(2)当 时,圆 与圆 外切;

(3)当 时,圆 与圆 相交;

(4)当 时,圆 与圆 内切;

(5)当 时,圆 与圆 内含;

4.2.3 直线与圆的方程的应用

1、利用平面直角坐标系解决直线与圆的位置关系;

2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论.

4.3.1空间直角坐标系

1、点M对应着唯一确定的有序实数组 , 、 、 分别是P、Q、R在 、 、 轴上的坐标

2、有序实数组 ,对应着空间直角坐标系中的一点

3、空间中任意点M的坐标都可以用有序实数组 来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M , 叫做点M的横坐标, 叫做点M的纵坐标, 叫做点M的竖坐标。

4.3.2空间两点间的距离公式

1、空间中任意一点 到点 之间的距离公式

一、累差法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+ …+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an 令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1

二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)∵f(n)可求积∴an=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an 令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n

三,构造法1、递推关系式为an+1=pan+q (p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(n?N)有an=2an-1+3,求an设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an 在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3可取x=1,y= -1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](n?N*)

四、利用sn和n、an的关系求an1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2 时, an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.当n=1时,an=sn=2当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2 时, an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1= -3×2n-1五、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an由已知可a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即ak=k+1则 ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1

关于“数列求和的七种方法及例题百度文库”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[冷儿]投稿,不代表五洲号立场,如若转载,请注明出处:https://www.tzwzszyy.cn/jingyan/202508-14369.html

(9)
冷儿的头像冷儿签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 冷儿的头像
    冷儿 2025年08月01日

    我是五洲号的签约作者“冷儿”

  • 冷儿
    冷儿 2025年08月01日

    本文概览:网上有关“数列求和的七种方法及例题百度文库”话题很是火热,小编也是针对数列求和的七种方法及例题百度文库寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望...

  • 冷儿
    用户080108 2025年08月01日

    文章不错《数列求和的七种方法及例题百度文库》内容很有帮助