网上有关“圆的弦长公式”话题很是火热,小编也是针对圆的弦长公式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
圆的弦长公式:弦长=2Rsina。R是半径,a是圆心角;弦长为连接圆上任意两点的线段的长度。半径r,圆心角a,弦长L。
弦长与半径之间的关系:弦长L弧高H与半径R的关系为R=H/2+L^2/(8*H)。弦长为连接圆上任意两点的线段的长度。弧长指的是在圆上过2点的一段弧的长度叫作弧长。
椭圆的弦长
1、焦点弦:A(x1,y1),B(x2,y2),AB为椭圆的焦点弦,M(x,y)为AB中点,则L=2a±2ex
2、设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则|P1P2|=|x1-x2|√(1+K?)或|P1P2|=|y1-y2|√(1+1/K?)。
关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。
这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
以上内容参考?百度百科-弦长公式
弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1] 其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号证明方法如下:假设直线为:Y=kx+b圆的方程为:(x-a)^+(y-u)^2=r^2假设相交弦为AB,点A为(x1.y1)点B为(X2.Y2)则有AB=√(x1-x2)^2+(y1-y2)^把y1=kx1+b.y2=kx2+b分别带入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2=√(x1-x2)^2+k^2(x1-x2)^2=√1+k^2*│x1-x2│证明ABy1-y2│√[(1/k^2)+1] 的方法也是一样的
关于“圆的弦长公式”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[是晓昕吖]投稿,不代表五洲号立场,如若转载,请注明出处:https://www.tzwzszyy.cn/jingyan/202507-2613.html
评论列表(3条)
我是五洲号的签约作者“是晓昕吖”
本文概览:网上有关“圆的弦长公式”话题很是火热,小编也是针对圆的弦长公式寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。圆的弦长公式:弦长=2Rs...
文章不错《圆的弦长公式》内容很有帮助